

Investigate Boyle's law (constant temperature) and Charles's law (constant pressure) for a gas		
Explain Brownian motion as evidence for existence of atoms		
Explain the relationships between <i>p</i> , <i>V</i> and <i>T</i> in terms of a simple molecular model		
Explain that the gas laws are empirical in nature whereas the kinetic theory model arises from theory		
Use and derive the equation $pV = \frac{1}{2}Nm \left(c_{rms}\right)^2$		
Use a simple algebraic approach for conservation of momentum		
Explain that for an ideal gas internal energy is the kinetic energy of the atoms		
Use the equation average molecular kinetic energy = $^{1}/_{2}$ m(c $_{rms}$) 2 = $^{3}/_{2}$ kT = 3 $_{RT}$ /2 $_{A}$		
Explain how knowledge and understanding of the behaviour of a gas has changed over time		

Personalised Learning Checklist	Red	Amber	Green
AQA A Level Physics (Concept) P7: Fields and their consequences P7.1: Fields			
Describe the concept of a force field as a region in which a body experiences a non-contact force			
Recognise that a force field can be represented as a vector, the direction of which must be determined by inspection			
Describe how force fields arise from the interaction of mass, of static charge, and between moving charges			
Explain the similarities and differences between gravitational and electrostatic forces			
P7.2: Gravitational fields			
Describe what gravity is			
Use the equation $F = Gm_1m_2/r^2$ for magnitude of force between point masses where G is the gravitational constant			
Be able to estimate the gravitational force between a variety of objects			
Be able to represent a gravitational field by gravitational field lines			
Use the equation $g = F/m$ with g as force per unit mass			
Use the equation $g = GM/r^2$ for magnitude of g in a radial field			
Define gravitational potential, including zero value at infinity			
Describe what gravitational potential difference is			
Use the equation: work done in moving mass for m given by $\Delta W = m\Delta V$			
Explain what equipotential surfaces are and explain why no work is done when moving along an equipotential surface			
Use the equation: $V = -GM/r$ for V in a radial field			
Explain the significance of the negative sign			
Draw graphical representations of variations of <i>g</i> and <i>V</i> with <i>r</i>			
Use the equation: $g = -\Delta V/\Delta r$ for V related to g			
Determine $\Delta \ V$ from area under graph of g against r			
Describe orbital period and speed related to radius of circular orbit; ab derive $T^2 \propto r^3$			
Estimate various parameters of planetary orbits, eg kinetic energy of a planet in orbit			
Calculate total energy of an orbiting satellite, escape velocity and describe synchronous orbits			
Describe the use of satellites in low orbits and geostationary orbits, to include plane and radius of geostationary orbit			
Use logarithmic plots to show relationships between $ au$ and $ au$ for given data			
P3: Electric fields			
Use the equation $F = 1/4\pi\epsilon_0 \times Q_1Q_2/r^2$ for the force between two charges in a vacuum			
Describe what the permittivity of free space is, $oldsymbol{arepsilon}_{o}$			
Recall that air can be treated as a vacuum when calculating force between charges			
Recall that for a charged sphere, charge may be considered to be at the centre			
Compare magnitude of gravitational and electrostatic forces between subatomic particles			
Estimate the magnitude of the electrostatic force between various charge configurations			
Be able to represent electric fields by electric field lines and explain electric field strength			
Use the equation: $E = F/Q$, where where E is the force per unit charge			

Use the equation: $E = V/d$, for magnitude of E in a uniform field		
Derive the equation: Fd = QΔV from work done for moving charge between plates		
Describe the trajectory of moving charged particle entering a uniform electric field initially at right angles		
Use the equation $E = 1/4 \pi \epsilon_0 \times Q/r^2$, for magnitude of E in a uniform field		
Investigate the patterns of various field configurations using conducting paper (2D) or electrolytic tank (3D)		
Define absolute electric potential, including zero value at infinity, and of electric potential difference		
Use the equation: $\Delta W = Q\Delta V$ for work done in moving charge Q		
Explain what equipotential surfaces are and explain why no work is done when moving charge along an equipotential surface		
Use the equation: $V = 1/4\pi\epsilon_0 \times Q/r^2$ for magnitude of V in a radial field		
Draw graphical representations of variations of $m{E}$ and $m{V}$ with $m{r}$		
Use the equation: $E = \Delta V/\Delta r$ to related V to E		
Determine ΔV from the area under graph of E against r		
P4: Capacitance		
Define capacitance and use the equation: $C = Q/V$		
Describe the dielectric action in a capacitor by $C = A \varepsilon_0 \varepsilon_r / d$		
Define relative permittivity and dielectric constant		
Determine the relative permittivity of a dielectric using a parallel-plate capacitor		
Describe the action of a simple polar molecule that rotates in the presence of an electric field		
Investigate the relationship between C and the dimensions of a parallel-plate capacitor		
Interpret the area under a graph of charge against pd $E = \frac{1}{2} QV = \frac{1}{2} CV^2 = \frac{1}{2} Q^2/C$		
Draw graphical representation of charging and discharging of capacitors through resistors		
Draw corresponding graphs for Q, V and I against time for charging and discharging		
Interpret gradients and areas under graphs		
Calculate time constants <i>RC</i> including their determination from graphical data		
Use the equation: $T_{\text{g}} = 0.69RC$ for time to halve		
Use the equation: $\mathbf{Q} = \mathbf{Q}_0 e^{-t/RC}$ for quantitative treatment of capacitor discharge		
Use the corresponding equations for $oldsymbol{V}$ and $oldsymbol{I}$		
Use the equation: $Q = Q_0 (1 - e^{-t/RC})$ for quantitative treatment of capacitor charge		
Investigate the charge and discharge of capacitors		
P5: Magnetic fields		
Describe force on a current-carrying wire in a magnetic field: F - BII when field is perpendicular to current		
Describe and use Fleming's left hand rule		
Explain magnetic flux density B and give a definition for the tesla		
Investigate how the force on a wire varies with flux density, current and length of wire using a top pan balance		
Describe force on charged particles moving in a magnetic field, using $F = BQv$ when the field is perpendicular to velocity		
Recall the direction of force on positive and negative charged particles		
Describe the circular path of particles in application in devices such as the cyclotron		

Explain the terms: magnetic flux density $\phi = BA$, and flux linkage $N\phi$, where B is normal to A and N is the number of turns cutting the flux		
Describe flux and flux linkage passing through a rectangular coil rotated in a magnetic field as flux linkage $N \phi = BANcos \theta$		
Investigate, the effect on magnetic flux linkage of varying the angle between a search coil and magnetic field direction		
Describe simple experimental phenomena for electromagnetic induction		
Describe and apply Faraday's and Lenz's laws for electromagnetic induction		
Use the equation: $\varepsilon = N\Delta \phi/\Delta$ for magnitude of induced emf = rate of change of flux linkage		
Describe applications such as a straight conductor moving in a magnetic field		
Use the equation: $\varepsilon = BAN\omega \sin \omega t$ for emf induced in a coil rotating uniformly in a magnetic field		
Recall Sinusoidal voltages and currents, root mean square, peak and peak-to-peak values for sinusoidal waveforms only		
Use the equation: $I_{rms} = I_0/\sqrt{2}$; $V_{rms} = V_0/\sqrt{2}$		
Apply the calculation of mains electricity peak and peak-to-peak voltage values		
Use an oscilloscope as a dc and ac voltmeter, to measure time intervals and frequencies, and to display ac waveforms		
Use the following transformer equation: $N_s/N_p = V_s/V_p$		
Use the equation: $I_s V_s / I_p V_p$ to calculate transformer efficiency		
Describe and explain the production of eddy currents and causes of inefficiencies in a transformer		
Describe the transmission of electrical power at high voltage including calculations of power loss in transmission lines		

Identify, on a plot, the regions where nuclei will release energy when undergoing fission/fusion		
Describe how knowledge of the physics of nuclear energy allows society to use science to inform decision making		
Describe fission as induced by thermal neutrons; possibility of a chain reaction due to critical mass		
Explain the functions of the moderator, control rods, and coolant in a thermal nuclear reactor.		
Describe simple a mechanical model of moderation by elastic collisions		
Recall factors affecting the choice of materials for the moderator, control rods and coolant and give examples of materials used		
Describe safety aspects of fuel used, remote handling of fuel, shielding, emergency shut-down		
Describe safety aspects of production, remote handling, and storage of radioactive waste materials.		
Evaluate the of balance between risk and benefits in the development of nuclear power		

Recall that gamma ray bursts are due to the collapse of supergiant stars to form neutron stars or black holes		
Compare energy output with total energy output of the Sun		
Describe the use of type 1a supernovae as standard candles to determine distances		
Discuss controversy concerning accelerating Universe and dark energy		
Recall the light curve of typical type 1a supernovae		
Recall that supermassive black holes are at the centre of galaxies		
Calculate the radius of the event horizon for a black hole using Schwarzschild radius (R_s), $R_s \approx 2GM/c^2$		
P9.3: Cosmology		
Describe the Doppler effect	T	
Apply $\Delta f/f = v/c$ and $z = \Delta h/h = -v/c$ for $v << c$ to optical and radio frequencies.		
Complete calculations on binary stars viewed in the plane of orbit		
Describe what galaxies and quasars are		
Define and use Hubble's law		
Use the following equation: v = Hd for red shift		
Make simple interpretations for expansion of universe; estimation of age of universe, assuming H is constant		
Evaluate qualitative data for Big Bang theory including evidence from cosmological microwave background radiation, and relative abundance of H & He		
Define quasars as the most distant measurable objects		
Describe the discovery of quasars as bright radio sources		
Recall that quasars show large optical red shifts; estimation involving distance and power output		
Describe the formation of quasars from active supermassive black holes		
Discuss the difficulties in the direct detection of exoplanets		
Describe how detection techniques will be limited to variation in Doppler shift (radial velocity method) and the transit method		
Recognise a typical light curve		

_ .